

Anaesthesia

Correspondence Web Site

Journal of the Association of Anaesthetists of Great Britain and Ireland

| Current Content List | Archived Correspondence | Correspondence Help |

Step Three: View or Send Correspondence

75 Treatment of the first known case of king cobra envenomation in the United Kingdom, complicated by severe anaphylaxis

[\[Link to abstract\]](#)

[\[Send Correspondence\]](#) [\[Email this page to a colleague\]](#) [\[Terms and Conditions\]](#)

08 May 2007
JOSEPH SILSBY, FRENCHAY HOSPITAL, UK

Thank you for the opportunity to respond to Dr Winkel's interesting and useful comments. The clue to the management of this case is in the title. Life threatening envenomation is incredibly rare in the UK, and in the first instance advice will be sought from regional poison centres. Most doctors in acute care in the UK will never come across a case.

One of us (JAC) worked in an elapid endemic area 25 years previously, and instituted the first aid measures of a firm lymphatic bandage and immobilisation. However, signs of systemic envenomation were already present at this stage. Hypertension following intubation persisted despite adequate sedation which tends to refute the suggestion that it was caused by awareness. The use of labetalol to control the hypertension, whilst debatable in retrospect, was chosen as it has a short duration of action and is, therefore, easy to control. At that stage it was not evident that adrenaline would be required later, and as it has relatively weak alpha blocking activity it would be unlikely, in clinical practice, to interfere with adrenaline in the dose used.

As Dr Winkel says, King Cobra venom is a mixture of toxins and enzymes, and we were expecting other clinical manifestations of envenomation to develop. However, there was no haematological, cardiac or enzyme disorder abnormality detected.

Dr Winkel also states that the decision to pre-treat with adrenaline is not universally recommended; the advice from our expert at the Liverpool School of Tropical Medicine was to not give it as pre-treatment. We would repeat our recommendation that in such rare cases urgent advice from an expert should be sought, and having taken that advice it should be followed.

Finally whilst we agree that snake-handlers should practice safe-handling techniques and have an emergency first aid plan, to suggest that they should also maintain their own antivenom stocks is probably impractical given the rarity of this event in the UK and other non-elapid endemic countries, particularly given the rapidity with which antivenom can be obtained from major poison centres. Our patient, despite failing to undertake basic first-aid, was extremely fortunate in that on running out of the reptile outlet a police car happened to be the first car cruising past, and he was

Blackwell
Synergy

Anaesthesia
Online

Association of
Anaesthetists
of Great Britain
and Ireland

 Blackwell
Publishing

taken immediately to hospital.

20 February 2007

Dr Ken D Winkel, Australian Venom Research Unit, Australia

We would like to raise several points concerning snakebite management as reported by Veto et al [1]. Firstly, effective first aid was not given. The pressure-immobilisation technique is the recommended first aid for neurotoxic elapid bites [2, 3]. It involves limb immobilisation with splints (omitted in this case) preceded by pressure bandaging of the entire limb [4, 5]. In a previous case of a king cobra bite in the USA, the patient drove himself to hospital and thus facilitated movement of venom and potentially hastened the onset of neurotoxicity [6]. This case also illustrates the lack of reliable prediction of adverse anti-venom reactions by the use of test dosing, a practice contra-indicated by formal studies [7, 8].

Secondly, no premedication was given to prevent or ameliorate an adverse reaction to anti-venom. Prevention of adverse reactions to anti-venom has been the subject of several studies. A randomised controlled trial of subcutaneous adrenaline [9] showed that it reduced the reaction rate and diminished the severity of adverse reactions. On the other hand, neither promethazine nor hydrocortisone alone is effective [10, 11] while a combination of hydrocortisone and chlorpheniramine is better than placebo [11]. Adrenaline prophylaxis has been adopted in some clinical environments [12] but is discouraged in others [13]. If given, it should be given subcutaneously, not intravenously or intramuscularly since it may otherwise provoke a serious haemorrhage in the presence of venom-induced coagulopathy [14].

Since the patient became hypertensive after intubation and before the administration of anti-venom, we question the degree of sedation given to this patient. This possible awareness-induced hypertension complicated the subsequent management of anaphylaxis that was treated, in part, by labetalol before adrenaline was required for anti-venom-induced bronchospasm and hypotension. Labetalol is contra-indicated in an asthmatic patient, since, like propanolol, it may precipitate bronchospasm and hypotension [15], and as a beta-adrenergic antagonist, it competes with adrenaline for binding sites on post-synaptic norepinephrine receptors [16], and may reduce the efficacy of adrenaline in treating anaphylaxis.

This case report also illustrates the rapidity with which neurotoxicity may develop, and if, as in this case, anti-venom is not immediately available, anticholinesterases should be considered, since these can rapidly improve neuromuscular function after Asian cobra bites [17].

The venom of *Ophiophagus hannah* is a complex mixture rich in potent postsynaptic neurotoxins, cytolytic cardiotoxins, myotoxins, platelet aggregation agonists, fibrinolytic peptides and other components. Given this complexity it would be of interest to know whether any haemostatic, enzymatic or cardiotoxic abnormalities were evident in this patient. It would also be of interest to know the outcome of the isolated finger ischaemia.

Finally, this case should encourage snake handlers, particularly those employed by specialist reptile outlets and zoos, to:

- adopt safe handling practices to reduce the risk of snakebite;
- develop emergency action plans that includes appropriate first-aid techniques;
- and maintain appropriate anti-venom stocks so that delays to life-threatening treatment may be avoided.

References

1. Veto T, Price R, Silsby JF, Carter JA. Treatment of the first known case of king cobra envenomation in the United Kingdom

complicated by severe anaphylaxis. *Anaesthesia* 2007; 62: 75-8.

2. Sutherland SK, Coulter AR, Harris RD. Rationalisation of first-aid measures for elapid snakebite. *Lancet* 1979; 1: 183-6.
3. Warrell DA. Treatment of bites by adders and exotic venomous snakes. *British Medical Journal* 2005; 331: 1244-7.
4. Winkel KD, Hawdon GM, Levick NR. Pressure immobilization for neurotoxic snake bites. *Annals of Emergency Medicine* 1999; 34: 294-5.
5. http://www.avru.org/firstaid/firstaid_pib.html
6. Gold BS, Pyle P. Successful treatment of neurotoxic king cobra envenomation in Myrtle Beach, South Carolina. *Annals of Emergency Medicine* 1998; 32: 736-8.
7. Malasit P, Warrell DA, Chanthavanich P, et al Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. *British Medical Journal* 1986; 292: 17-20.
8. Cupo P, Azevedo-Marques MM, de Menezes JB, Hering SE. Immediate hypersensitivity reactions after intravenous use of antivenin sera: prognostic value of intradermal sensitivity tests. *Revista do Instituto de Medicina Tropical de Sao Paulo* 1991; 33: 115-22.
9. Premawardhena AP, de Silva CE, Fonseka MM, et al. Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised, placebo controlled trial. *British Medical Journal* 1999; 318: 1041-3.
10. Fan HW, Marcopito LF, Cardoso JLC, et al. Sequential, randomised and double-blind trial of promethazine prophylaxis against early anaphylactic reactions to antivenom for *Bothrops* snake bites. *British Medical Journal* 1999; 318: 1451-3.
11. Gawarammana IB, Kularatne SAM, Dissanayake WP, et al. Parallel infusion of hydrocortisone & chlorpheniramine bolus injection to prevent acute adverse reactions to antivenom for snakebites: a randomised, double-blind, placebo-controlled study. *Medical Journal of Australia* 2004; 180: 20-3.
12. Williams DJ, Jensen SD, Nimorakiotakis B, et al. Antivenom use, premedication and early adverse reactions in the management of snake bites in rural Papua New Guinea. *Toxicon* 2007 (in press).
13. Currie BJ. Snakebite in tropical Australia, Papua New Guinea and Irian Jaya. *Emergency Medicine Australia* 2000; 12: 285-94.
14. Tibballs J. Premedication for snake antivenom. *Medical Journal of Australia* 1994; 160: 4-6.
15. British National Formulary. British Medical Journal Publishing Group Ltd, London and the Royal Pharmaceutical Society of Great Britain, 2005: 83-7.
16. Pitman RK, Delahanty DL. Conceptually driven pharmacologic approaches to acute trauma. *CNS Spectrums* 2005; 10: 99-106.
17. Watt G, Theakston RD, Hayes CG, et al. Positive response to edrophonium in patients with neurotoxic envenoming by cobras (*Naja naja philippinensis*). A placebo-controlled study. *New England Journal of Medicine* 1986; 315: 1444-8.

[\[Send Correspondence\]](#) [\[Email this page to a colleague\]](#) [\[Terms and Conditions\]](#)

This site is best viewed at a screen size of 800 by 600 pixels, using version 4 or higher of Internet Explorer or Netscape Navigator.

© Blackwell Publishing
[Terms and Conditions](#)
[Privacy Information](#)